User manual

SG6C-ORNX-G2-F

Version 1.0

Disclaimers

SENSING reserves the right to edit/modify this document without any prior notice.

1 www.sensing-world.com | Copyright belongs to SENSING | SZ Sensing TECH.,LTD

Catalogue

Document Revision of curriculum vitae	.3
Safety warnings and precautions for use	4
Explanation of nouns	.5
Chapter 1 Introduction to the SG6C-ORNX-G2-F Carrier Board	.7
1.1 SG6C-ORNX-G2-F Carrier Board Features	7
1.2 SG6C-ORNX-G2-F Carrier Board Specifications	.8
Chapter 2 SG6C-ORNX-G2-F Carrier board operating instructions	5
2.1 Setting up the environment1	5
2.2 Application Notes2	20

Document Revision of curriculum vitae

Rev	Date	Description	Author
Document Date of		Description	Author
version	revision		
number			
V1.0	2023/03/28	Initial release	Resear
			ch and
			Developm
			ent

Safety warnings and precautions for use

• Safety instructions

Before using this product, you must first consult this document to gain an initial understanding of the product and follow the safety instructions in the product's user manual to ensure your personal safety and to avoid damage to the equipment. The manufacturer is not responsible for any problems with the equipment or the safety of your life and property caused by its incorrect operation.

• Supply voltage

Carrier board supports input power range: 12-36V DC; current: 3A or more

• Environmental requirements:

Operating temperature: -20°C - 65°C

Ventilation requirements: The area around the installation of the calculation platform must be well ventilated.

• Grounding requirements

The power supply of the power adapter must be well earthed, in special scenarios it is necessary to install an earth screw to earth.

• Static Protection

Electronic components and circuits are sensitive to electrostatic discharge. Although we design our circuit board card products with anti-static protection for the main interfaces on the board, it is difficult to achieve anti-static safety protection for all components and circuits. It is therefore advisable to observe anti-static safety measures when handling any circuit board components. ESD safety measures include, but are not limited to, the following:

- The box should be placed in an anti-static bag during transport and storage until the installation and deployment of this carrier board card;
- The static electricity stored in the body should be discharged before the body comes into contact with the box: wear a discharge grounding wristband;
- Operate the box only within the safe area of the static discharge point;
- Avoid moving boxes in carpeted areas.

Explanation of nouns

POC	Power Over Coax
GMSL	Gigabit Multimedia Serial Links
FPDLINK	Flat Panel Display Link
SerDes	Serializer and Deserializer
D-PHY	The original version of the MIPI D-PHY was designed for

500Mbits/s, while D is 500 in Roman numerals (Latin				
numerals), and C and M are 100 and 1000 in Roman				
numerals respectively, i.e. C and M in C-PHY and M-PHY.				
C-PHYs may be used in channel-limited applications,				
hence the use of the character "C", 3-Phase symbol				
encoding technology, which allows each symbol to				
2.28bits of data per symbol, 2.27 times more efficient				
than D-PHY using a 5-input transmission				

Chapter 1 Introduction to the SG6C-ORNX-G2-F Carrier Board

The SG6C-ORNX-G2-F is a computing platform carrier board designed for NVIDIA Jetson Xavier/Orin NX series modules, and is also compatible with TX2-NX and Nano SOM core modules. PCIe expandable 4G, M.2 Key-B access to 5G modules, 2-way CAN bus, 2-way USB3.0 compatible with 2.0, etc. With long MTBF stable operation capability, it is widely used in low-speed automatic driving controller, logistics, security, transportation and other industries, and the end product form is rich for application in robots, drones, unmanned delivery vehicles, unmanned ships, intelligent law enforcement equipment, etc.

1.1 SG6C-ORNX-G2-F Carrier Board Features

- Support for NVIDIA Jetson Xavier/Orin NX (compatible with TX2-NX/Nano)
- Supports M.2 KEY M 2280 (PClex4 NVMe SSD or Compute Stick)
- Supports 6 GMSL cameras (GMSL1 and GMSL2 compatible)
- Supports M.2 KeyB extension interface for access to 5G modules
- Supports mini-PCIe expansion interface for access to 4G modules
- Supports dual Gigabit RJ45 network interfaces
- Dual-band WIFI support and optional GPS support
- Supports a wide range of interfaces (e.g. USB/Serial/CAN/GPIO, etc.)

• Compatible with installation of different versions of NVIDIA JetPack SDK

Product definition						
Туре	Items	Description	Comment			
		NVIDIA Jetson Xavier NX (21TOPS)				
	Processor	NVIDIA Jetson Orin NX				
SOM		(100TOPS)				
Core		NVIDIA Jetson TX2-NX/Nano				
Core	LPDDR	8GB/16GB LPDDR5				
	HDD storage	Xavier NX with 16G eMMC 5.1 Orin NX without internal eMMC can use SSD				
	Wired	Supports 1x Gigabit RJ45	RJ45			
Networ	Network	Supports 1x Gigabit RJ45	PCIe to NIC			
k Interfac	WIFI network	WIFI 2.4G/5GHz compatible BT	Must link: BL_M8822CU			
e	4G network	Compatible with the MobileTech EC20 (mini-PCle)	Uses USB 2.0 protocol			

1.2 SG6C-ORNX-G2-F Carrier Board Specifications

5G	Compatible with RM500U-CN	Lisos LISP 2.0 protocol	
networks	(M.2 Key B)		
GNSS	L76K module supports	UART is used (no module by	
	GPS/BeiDou-2.0M accuracy	default)	

	M.2	M.2-Key M SSD support, length	Con support 1TP	
interface		2280		
		2xUSB3.0 compatible with 2.0	Supports LISP 51//1 54 per port	
		TYPE-A	Supports USB SV/1.5A per port,	
		1xOTG USB2.0 TYPE-C	2xUSB3.0 Hub RTS5411	
Functio	USB port	(download)	TYPE-C Debug interface for	
- and			accessing the device UART Debug	
nai		IXUSB2.0 TYPE-C Debug	information on the PC	
interfac		(USB to UART Debug interface)		
es		2-way GMSL FAKRA (1 x	Compatible with various serializers	
		MAX9296)	such as GMSL2/GMSL1	
	Camera	4-way GMSL FAKRA (1 x	Compatible with various serializers	
	interface	MAX96712)	such as GMSL2/GMSL1	
		Supports one set of 4Lane CSI	20Din ZIE connector	
		interfaces		

	2xDI 3.3V TTL	
	2xDO 3.3V TTL	
20Pin	2x CAN_H/L (with isolation)	2x10Pin 2mm Pitch Phoenix
Header	1x RS232	Terminal
	1x RS485	
	1x Sync signal (input to GMSL)	
T.C. I	T-card interface, no hot-swap	3.3V@1A (This T-card interface is
I-Calu	support	not supported if Orin NX is used)
RTC	1x RTC	3mAh 6.8mm X 2.1mm

	FAN	4-Pin fan connector	Support PWM regulation (original fan) 5V power supply
	Display interface	HDMI 2.0	Horizontal
	Button	Reset button	Hardware reset button
	button	Recover button	For download mode
		Power indicator	Red light
	LED lights	Status indicator	Green indicator, API available for control
	SIM card	Push-pull	Side
Power	Start up	Power on since	Power-up controlled by MCU

supply	Chutdown	Does not support power-off		
specific	Shutdown	delay		
ations	Electricity	122010		
	supply	12~30V DC		
	Power		Subject to change depending on	
	consumpti	≤30W		
	on		peripherals	
Comple	Size	Length*width*height	155x124x24.5mm	
te	Heat	Active cooling support		
machine	Dissipatio		Fully compatible with NX kit fans	
form	n			
Tompor	Operating			
aturo	temperatu	-20°C ~ +65°C		
and	re			
humidit	Storage			
v	temperatu	-40°C ~ +85°C		
У	re			

• Front interface view of the carrier board

• Back of Carrier Board Interface Diagram

• Side view interface view of the carrier board

Chapter 2 SG6C-ORNX-G2-F Carrier board operating instructions

Reference link to Nvidia's official website:

https://docs.nvidia.com/jetson/archives/r35.2.1/DeveloperGuide/text/IN/QuickSt art.html#in-quickstart

2.1 Setting up the environment

The SG6C-ORNX-G2-F carrier board is used with NVIDIA Jetson Xavier/Orin NX and other core boards. The driver package is developed on a specific Jetson Linux version and you need to make sure the Jetson Linux version matches before installing the driver. If it does not match, you need to re-flash the system, otherwise the system will not boot after installing the driver. NVIDIA Jetson Xavier/Orin NX supports two types of flushing methods, using SDK Manager and via the Flash.sh script. Here is how to use the Flash.sh script.

Preparation required:

- SG6C-ORNX-G2-F carrier board with NVIDIA Jetson Xavier/Orin NX module and SSD
- Computer with Ubuntu 18.04/20.04s 1
- USB TYPE-C data cable 1pc

2.1.1 Set RECOVERY download mode

The Nvidia Jetson platform software is upgraded via the USB interface and the Jetson device needs to be put into Recovery mode before the upgrade, which allows system updates, including the kernel Kernel, file system RootFS, JetPack SDK, etc.

To enter Recovery download mode in the off state, proceed as follows:

(1) Connecting a USB TYPE-C cable

Use a USB TYPE-C cable to connect the Jetson device to the Ubuntu Host, with one end connected to the TYPE-C port of the Jetson device and the other end connected to the USB port of the Ubuntu Host

- (2) Pressing the REC download button (hold) and then powering up the system using the power supply paired with the carrier board;
- (3) Wait for more than 5s and release all buttons to enter Recovery download mode

You can run the command Isusb on the Ubuntu Host to check for NVIDIA Corp devices to confirm that the Jetson device has successfully entered Recovery download mode. The USB VID/PID varies from Jetson module to Jetson module.

Bus 003 Device 005: ID 0955:7c18 NVidia Corp.

2.1.2 Use the flash.sh script to flush the machine

(1) Download the brush package

16 www.sensing-world.com | Copyright belongs to SENSING | SZ Sensing TECH.,LTD

https://developer.nvidia.com/embedded/jetson-linux

Depending on the driver version, select the corresponding Jetson Linux version,

here JetPack 5.1 (Jetson Linux 35.2.1) is used as an example.

Downloads and Links

	Jetson Orin modules and developer kit	Jetson Xavier modules and developer kits					
DRIVERS	Driver Package (BSP)						
	Sample	e Root Filesystem					
SOURCES	Driver Par	ckage (BSP) Sources					
	Sample Root Filesystem Sources						
	Sensor Processing Engine Sources						
DOCS	Jetson AGX Orin Developer Kit User Guide	Jetson AGX Xavier Developer Kit User Guide					
		Jetson AGX Xavier Platform Adaptation Guide					
	Release Notes						
	Jetson Linux Developer Guide (online version)						
	Jetson Linux Developer Guide (downloadable version)						
	Software License Agreement						
	Jetson Linux API Reference (formerly named Multimedia API Reference)						
	nvbuf_utils to NvUtils Migration Guide						

Click on Driver Package to download Jetson_Linux_R35.2.1_aarch64.tbz2, click on

Sample Root Filesystem to download

Tegra_Linux_Sample-Root-Filesystem_R35.2.1_aarch64. tbz2 and copy it to the

working directory of your Ubuntu Host.

(2) Unzip and install the brush package

Unzip the package, note that the filesystem needs to be extracted to the

Linux_for_Tegr a/rootfs directory via sudo.

\$ tar -jxvf Jetson_Linux_R35.2.1_aarch64.tbz2

\$ sudo tar -jxvf Tegra_Linux_Sample-Root-Filesystem_R35.2.1_aarch64.tbz2 -C

Linux_for_Tegra/rootfs/

Execute the following script

\$ cd Linux_for_Tegra/

\$ sudo . /apply_binaries.sh

\$ sudo . /tools/l4t_flash_prerequisites.sh

Note: If an error is reported during the execution of this script, follow the prompts to

install the appropriate dependency package.

As the carrier board does not have an eeprom, the following files need to be

modified

Linux for_Tegra/bootloader/t186ref/BCT/ tegra234-mb2-bct-misc-p3767-0000.dts

- cvb_eeprom_read size =<0x100>

+ cvb_eeprom_read size =<0x0>

(3) Refresh

Refer to section "2.1.1 Setting up Recovery Download Mode" to put the Jetson device into Recovery download mode. After confirming that the device is recognized

with the lsusb command, execute the following command to refresh the device.

\$ sudo . /tools/kernel_flash/l4t_initrd_flash.sh \

--external-device nvme0n1p1 \

-c tools/kernel_flash/flash_l4t_external.xml \

-p "-c bootloader/t186ref/cfg/flash_t234_qspi.xml" \

--showlogs --network usb0 p3509-a02+p3767-0000 internal

```
688.5490 ] Bootloader version 01.00.0000
 688.5808 ] Writing partition A_MEM_BCT with mem_coldboot_sigheader.bct.encrypt
[ 243712 bytes ]
[ 688.5826 ] [.....
                    .....] 100%
[ 691.6344 ] tegradevflash_v2 --write B_MEM_BCT mem_coldboot_sigheader.bct.encry
pt
[ 691.6494 ] Bootloader version 01.00.0000
[ 691.6854 ] Writing partition B_MEM_BCT with mem_coldboot_sigheader.bct.encrypt
[ 243712 bytes ]
[ 691.6886 ] [.....] 100%
[ 694.7130 ] Flashing completed
[ 694.7228 ] Coldbooting the device
[ 694.7371 ] tegrarcm_v2 --chip 0x23 0 --ismb2
[ 694.7568 ] MB2 version 01.00.0000
[ 694.7947 ] Coldbooting the device
 694.7960 ] tegrarcm_v2 --chip 0x23 0 --reboot coldboot
 694.8031 ] MB2 version 01.00.0000
*** The target t186ref has been flashed successfully. ***
Reset the board to boot from internal eMMC.
```

After brushing, the Jetson device automatically reboots into the Linux system and

follows the wizard to complete the configuration to access the desktop.

2.2 Application Notes

2.2.1 Network port applications

The carrier board has two Gigabit RJ45 network interfaces, one of which is the core module with its own Gigabit network, and the other is the PCIex1 expansion using the Realtek RTL8111 chip. Test network bandwidth and packet loss, etc. are as follows:

(1) Testing Tools

iperf or iperf3 (Windows or Linux)

sudo apt-get install iperf

(2) Test network bandwidth, stable operation bandwidth up to 940Mbits / sec

PC computer (IP: 192.168.1.195)

Carrier machine (IP: 192.168.1.159)

PC computer running as server: iperf -s -i 2 -w 2m (IP: 192.168.1.2)

Carrier board running as device side: iperf -c 192.168.1.2-i 2 -w 2m -t 60

S	erve	r liste	eninq	on a	TCP po	ort 500	91		1 01 10.+-)	
P	LP W.	indow s	size:	41	6 KBY	e (WAF	KNING: I	requested	1.91 MByte)	
I	4]	local	192.	168.	1.195	port 5	5001 cor	nnected wi	th 192.168.1.159	port 48826
[ID]	Interv	/al		Trans	fer	Bandy	width	34	
I	4]	0.0-	2.0	sec	224	MBytes	s 941	Mbits/sec		
I	4]	2.0-	4.0	sec	224	MBytes	s 942	Mbits/sec		
I	4]	4.0-	6.0	sec	224	MBytes	942	Mbits/sec		
[4]	6.0-	8.0	sec	224	MBytes	s 942	Mbits/sec		
I	4]	8.0-1	10.0	sec	224	MBytes	942	Mbits/sec		
Ι	4]	10.0-1	12.0	sec	224	MBytes	s 942	Mbits/sec		
[4]	12.0-1	4.0	sec	224	MBytes	s 942	Mbits/sec		

nvidia@nvidia-desktop:~\$ iperf -c 192.168.1.195 -i 2 -w 2m -t 60 Client connecting to 192.168.1.195, TCP port 5001 TCP window size: 416 KByte (WARNING: requested 1.91 MByte) 3] local 192.168.1.159 port 48826 connected with 192.168.1.195 port 5001 [ID] Interval Transfer Bandwidth 3] 0.0- 2.0 sec 225 MBytes 943 Mbits/sec 3] 2.0- 4.0 sec 225 MBytes 942 Mbits/sec ſ 3] 4.0- 6.0 sec 224 MBytes 941 Mbits/sec ſ 3] 6.0- 8.0 sec 224 MBytes 941 Mbits/sec 3] 8.0-10.0 sec 224 MBytes 941 Mbits/sec 3] 10.0-12.0 sec 224 MBytes 942 Mbits/sec 3] 12.0-14.0 sec 224 MBytes 942 Mbits/sec

Carrier board running as server: iperf -s -i 2 -w 2m (IP: 192.168.1.159)

PC computer as device side run: iperf -c 192.168.1.159-i 2 -w 2m -t 60

```
nvidia@nvidia-desktop:~$ iperf -s -i 2 -w 2m
Server listening on TCP port 5001
TCP window size: 416 KByte (WARNING: requested 1.91 MByte)
   4] local 192.168.1.159 port 5001 connected with 192.168.1.195 port 59080
[ ID] Interval
                   Transfer
                               Bandwidth
  4]
      0.0- 2.0 sec 224 MBytes
                                939 Mbits/sec
[
  4]
     2.0- 4.0 sec 224 MBytes
                               941 Mbits/sec
[
   4]
     4.0- 6.0 sec
                    224 MBytes
                               940 Mbits/sec
[
                    224 MBytes
  4] 6.0- 8.0 sec
                               941 Mbits/sec
[
  4] 8.0-10.0 sec
                    224 MBytes
                                941 Mbits/sec
   4] 10.0-12.0 sec
                    224 MBytes
                                940 Mbits/sec
                    224 MBytes
   4] 12.0-14.0 sec
                               941 Mbits/sec
    Client connecting to 192.168.1.159, TCP port 5001
TCP window size: 416 KByte (WARNING: requested 1.91 MByte)
 3] local 192.168.1.195 port 59080 connected with 192.168.1.159 port 5001
 ID] Interval
                   Transfer
                               Bandwidth
     0.0- 2.0 sec
                    223 MBytes 936 Mbits/sec
  3]
  3]
     2.0- 4.0 sec
                   224 MBytes 941 Mbits/sec
  3]
     4.0- 6.0 sec
                    224 MBytes
                                941 Mbits/sec
[
  3]
                    224 MBytes 942 Mbits/sec
     6.0- 8.0 sec
  3]
     8.0-10.0 sec
                    224 MBytes
                                941 Mbits/sec
                                941 Mbits/sec
  3] 10.0-12.0 sec
                    224 MBytes
  3] 12.0-14.0 sec 224 MBytes 942 Mbits/sec
```

(3) Test jitter, packet loss rate

The carrier board runs as a server: iperf -s -u -i 2

PC computer as device side run: iperf -c 192.168.1.159 -i 2 -w 2m -u -b 200m -t60

nvidia@nvidia-desktop:~\$ iperf -s -u -i 2					
Server l Receivin UDP buff	istening on U g 1470 byte da er size: 208	DP port 5001 atagrams KByte (defau	ılt)		
<pre>[3] local 192.168.1.159 port 5001 connected with 192.168.1.195 port 52831 [ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams [3] 0.0- 2.0 sec 47.8 MBytes 200 Mbits/sec 0.033 ms 0/34094 (0%) [3] 2.0- 4.0 sec 47.7 MBytes 200 Mbits/sec 0.019 ms 0/34014 (0%) [3] 4.0- 6.0 sec 47.7 MBytes 200 Mbits/sec 0.044 ms 0/34012 (0%) [3] 6.0- 8.0 sec 47.7 MBytes 200 Mbits/sec 0.042 ms 0/34013 (0%) [3] 8.0-10.0 sec 47.7 MBytes 200 Mbits/sec 0.055 ms 0/34015 (0%) [3] 10.0-12.0 sec 47.7 MBytes 200 Mbits/sec 0.036 ms 0/34014 (0%) [3] 12.0-14.0 sec 47.7 MBytes 200 Mbits/sec 0.023 ms 0/34014 (0%)</pre>					
Client connecting to 192.168.1.159, UDP port 5001 Sending 1470 byte datagrams, IPG target: 58.80 us (kalman adjust) UDP buffer size: 416 KByte (WARNING: requested 1.91 MByte)					
[3] 10 [ID] In [3] 0 [3] 2 [3] 2 [3] 2 [3] 2 [3] 10 [3] 12	ocal 192.168. nterval 0.0- 2.0 sec 2.0- 4.0 sec 4.0- 6.0 sec 5.0- 8.0 sec 3.0-10.0 sec 0.0-12.0 sec 2.0-14.0 sec	1.195 port 3 Transfer 47.7 MBytes 47.7 MBytes 47.7 MBytes 47.7 MBytes 47.7 MBytes 47.7 MBytes 47.7 MBytes	52831 connected w Bandwidth 5 200 Mbits/sec 5 200 Mbits/sec 5 200 Mbits/sec 5 200 Mbits/sec 5 200 Mbits/sec 5 200 Mbits/sec 5 200 Mbits/sec	with 192. c c c c c c c c c	168.1.159 port 5001

2.2.2 4G Applications

4G module (example: Mobile Farms EC20 module)

The USB device number is Bus 001 Device 005: ID 2c7c:0125

The 4G module uses ppp0 dialing method, you can follow the steps below to complete the dialing setup.

After inserting the 4G module and 4G sim card, click on "Network Settings" in the top right corner of the Ubuntu desktop, select "Mobile Broadband off" in the drop-down box, and select connect from the expanded options. After the installation prompt, select next to proceed and finally you will see connect, which means you are done dialing.

In the command line, you can use ifconfig to get the following figure, ppp0 assign ip successfully, you can do the Internet operation

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
<pre>lo: flags=73<up,l00pback,running> mtu 65536 inet 127.0.0.1 netmask 255.0.0.0 inet6 ::1 prefixlen 128 scopeid 0x10<host> loop txqueuelen 1000 (Local Loopback) RX packets 407 bytes 34771 (34.7 KB) RX errors 0 dropped 0 overruns 0 frame 0</host></up,l00pback,running></pre>
TX packets 407 bytes 34771 (34.7 KB) TX orrors @ dropped @ overrups @ carrier @ collisions @
IN errors of dropped o overruits of carrier of contractions of
<pre>ppp0: flags=4305<up,pointopoint,running,noarp,multicast> mtu 1500 inet 10.43.241.91 netmask 255.255.255 destination 0.0.0.0 ppp txqueuelen 3 (Point-to-Point Protocol) RX packets 225 bytes 149405 (149.4 KB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 362 bytes 25478 (25.4 KB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0</up,pointopoint,running,noarp,multicast></pre>
rndis0: flags=4099 <up,broadcast,multicast> mtu 1500</up,broadcast,multicast>

2.2.3 5G Applications

5G module (example: Mobile Far RM500U-CN module)

USB device number is Bus 002 Device 004: ID 2c7c:0800

nvio	lia@nx	:~\$ lsu	ısb		
Bus	002 D	evice 0	004: ID	2c7c:0800	
Bus	002 D	evice 0	003: ID	0bda:0411	Realtek Semiconductor Corp.
Bus	002 D	evice 0	001: ID	1d6b:0003	Linux Foundation 3.0 root hub
Bus	001 D	evice 0	003: ID	0bda:c820	Realtek Semiconductor Corp.
Bus	001 D	evice 0	004: ID	1a86:7523	QinHeng Electronics HL-340 USB-Serial adapter
Bus	001 D	evice 0	002: ID	0bda:5411	Realtek Semiconductor Corp.
Bus	001 D	evice 0	001: ID	1d6b:0002	Linux Foundation 2.0 root hub
nvid	dia@nx	:~\$ lsu	ısb -t		
/:	Bus 0	2.Port	1: Dev	1, Class=	root_hub, Driver=tegra-xusb/4p, 10000M
	P	ort 3:	Dev 3,	If 0, Clas	ss=Hub, Driver=hub/4p, 5000M
		Port	: 3: Dev	/ 4, If 0,	Class=Vendor Specific Class, Driver=option, 5000M
	1	Port	: 3: Dev	/ 4, If 1,	Class=Vendor Specific Class, Driver=option, 5000M
	1.	Port	: 3: Dev	/ 4, If 2,	Class=Vendor Specific Class, Driver=option, 5000M
	l.	Port	: 3: Dev	/ 4, If 3,	Class=Vendor Specific Class, Driver=option, 5000M
		Port	: 3: Dev	/4, If 4,	Class=Vendor Specific Class, Driver= <mark>qmi_wwan_q</mark> , 5000M
/:	Bus 0	1.Port	1: Dev	1, Class=	root_hub, Driver=tegra-xusb/4p, 480M
	P	ort 2:	Dev 2,	If 0, Clas	ss=Hub, Driver=hub/5p, 480M
	1	Port	: 4: Dev	/ 4, If 0,	Class=Vendor Specific Class, Driver=ch341, 12M
	P	ort 3:	Dev 3,	If 0, Clas	ss=Wireless, Driver=btusb, 480M
	P	ort 3:	Dev 3,	If 1, Clas	ss=Wireless, Driver=btusb, 480M
	P	ort 3:	Dev 3,	If 2, Clas	ss=Vendor Specific Class, Driver=rtl8821cu, 480M

The dial-up application adopts the dial-up tool provided by Mobile Farms

(Quectel_QConnectManager_Linux_V1.6.4, which supports automatic replay after

disconnection; if other modules are used, you need to contact the 5G supplier to

provide relevant tools)

\$ unzip Quectel_QConnectManager_Linux_V1.6.4.zip

\$ cd Quectel_QConnectManager_Linux_V1.6.4

\$ make

\$ sudo . / quectel-CM

2.2.4 WIFI Applications

The carrier board has built-in USB WIFI module (brand: BILIAN), BILIAN:

BL8821CU with Realtek RTL8821CU chip or BILIAN: BL8822CU with Realtek

RTL8822CU chip, the specification of these two WIFI modules can be obtained by

contacting technical support

USB device number:

Bus 001 Device 003: ID 0bda:c820 Realtek Semiconductor Corp.

Pins	Function		Pins	Function
Din1			Din2	Isolated
PINI KS485A		PINZ	DO/460	
Din2		19	Din4	Isolation
Pin3 RS485B	КЗ403Б		F1114	DO/459
Pin5	GND		Pin6	Isolated GND
Pin7	RS232_TX		Pin8	Isolated DI/465
Pin9	RS232_RX		Pin10	Isolated DI/458
Pin11	GND		Pin12	GND

2.2.5 20Pin multi-function interface

;	NX_CAN_L
;	NX_CAN_H
7	GPIO12
19	GPIO13

2.2.6 Serial RS232/RS485 Signal Definition

(1) Signal Definition

Interface	PHD2.0 pin	Signal	Interface Description
Name	number	Definition	
UART1	1	RS485_A	UAR0_TXD sends RS485 level
/dev/ttyTHS0	3	RS485_B	UAR0_RXD receives RS485 level
	5	GND	Grounding
	7	RS232_TX	RS232 send, USB to RS232
	9	RS232_RX	RS232 receiver, USB to RS232
	11	GND	Grounding

(2) UART interface configuration method

Open the corresponding device node under the /dev/ directory and set the baud rate, stop bits, parity bits, data bits, etc. You can use the stty command to configure

the baud rate, stop bits, parity bits, data bits, etc. of the serial port. See the stty command description for details.

command example, please modify the information in < > to the serial port node

number you want to adjust.

\$ sudo stty -F /dev/ttyTHS<XXX> speed 115200 cs8 -parenb -cstopb -echo

Output data testing

\$ sudo echo "uart debug" > /dev/ttyTHS<XXX>

Open a new terminal and use the following command to receive input data

\$ sudo cat /dev/ttyTHS<XXX>

2.2.7 Camera Sync IO synchronization signal definition

Interface Name	PHD2.0 pin	Signal Definition	Interface
	number		Description
Sync in1 sync	17	GPIO13 (NO: 419)	9296 Sync in signal
interface			
Sync in2 sync	19	GPIO12 (NO: 321)	96712 Sync in signal
interface			

Fixed frequency signal can be input to trigger the GMSL operation

2.2.8 CAN interface signal definition

(1) Signal Definition

Interface Name	PHD2.0 pin	Signal Definition	Interface Description
	number		
CANL	13	NX_CAN_L	NX_CAN_L terminal
CANH	15	NX_CAN_H	NX_CAN_H terminal
	14	CAN_FD_L	SPI to CAN_FD_L
			terminal
	16	CAN_FD_H	SPI to CAN_FD_H
			terminal
Total GND	5/11/12/18	GND	Earth Signal

Notes:

CANL/H is the CAN controller that comes with the NX module

CAN_L/H for SPI to CAN controller (chip is MCP2518FD) CAN FD support

CAN device specific use method, refer to https://github.com/linux-can/can-utils

cansend.c and candump.c in

(2) Shell script test commands

\$ sudo modprobe can

\$ sudo modprobe can_raw

\$ sudo modprobe mttcan
\$ sudo insmod /lib/modules/ \$(uname -r)/kernel/drivers/net/can/spi/mcp25xxfd.ko
\$ sudo ip link set can0 type can bitrate 200000 sjw 4 berr-reporting on loopback off
\$ sudo ip link set up can0
\$ sudo cansend can0 12345#abcdeabcde
\$ sudo candump can0
\$ sudo candump can0
\$ sudo ip -details -statistics link show can0

(3) How to use CAN FD configuration

\$ sudo modprobe can
\$ sudo modprobe can_raw
\$ sudo modprobe mttcan
\$ sudo insmod /lib/modules/ \$(uname -r)/kernel/drivers/net/can/spi/mcp25xxfd.ko
\$ sudo ip link set can0 type can bitrate 200000 sjw 4 dbitrate 1000000 dsjw 4 berr-reporting on
fd on
\$ sudo ip link set up can0
\$ sudo cansend can0 321##011

(4) The difference between CAN FD and CAN 2.0

\$ sudo ip link set can0 type can bitrate 200000 dbitrate 1000000 berr-reporting on fd on

Where bitrate is the baud rate in can2.0 mode; dbitrate is the baud rate in can fd mode, according to the official documentation, this value can be configured up to 5M, general applications are best to use 2M.

\$ sudo cansend can0 321##011

In the transmit command, there is an extra # between id and data, and the first byte (0) after ## is the value of canfd_frame.flags, ranging from 0 to F; the byte (11) after canfd_frame.flags is the first data, and up to 64 bytes can be transmitted at one time.

2.2.9 GPIO interface signal definition

GPIOs with isolated power supply method, 2 of them are input IO only (Pin2/Pin4) and 2 are used as output IO (Pin8/Pin10)

Interface Name	PHD2.0 pin	Signal Definition	Interface Description
	number		
GPIO_222_3V3	2	GPIO222_3V3	GPIO0222(gpio460)
GPIO_220_3V3	4	GPIO220_3V3	GPIO0220(gpio459)
GPIO_197_3V3	8	GPIO197_3V3	GPIO0197(gpio465)
GPIO_226_3V3	10	GPIO226_3V3	GPIO226(gpio458)

An example of the use of the GPIO interface is as follows. Please change the

information in <xxx > to the GPIO node designation you want to adjust:

Switch to root user

\$ sudo su -

\$ cd /sys/class/gpio

\$ echo gpio_num > export

Note:On JetPack5.x, exprot gpio_num generates a yyyy name instead of the

pre-JetPack4.x gpionum form

Set to high level (DO)

\$ echo 1 > /sys/class/gpio/xxxx/value

Set to low (DO)

\$ echo 0 > /sys/class/gpio/xxx/value

Read data (DI)

\$ cat /sys/class/gpio/xxxx/value

Set the input and output direction (DIRCTION)

\$ echo in > /sys/class/gpio/xxxx/direction

\$ echo out > /sys/class/gpio/xxx/direction

If you need to keep the configuration after shutdown, you can write the above

commands to the /etc/rc.local file

2.2.10 Fan FAN

Fan (compatible with Xavier NX original fan), speed automatically adjusted

according to temperature

2.2.11 TF card applications

\$ sudo fdisk -I /dev/mmcblk1

nvidia@nvidia:~\$ sudo fdisk -l /dev/mmcblk1 Disk /dev/mmcblk1: 29.7 GiB, 31914983424 bytes, 62333952 sectors Units: sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disklabel type: gpt Disk identifier: 989E7D2A-8190-4E93-95A0-3A822C6D2CC0 Device Start End Sectors Size Type /dev/mmcblk1p1 870400 28321791 27451392 13.1G Linux filesystem

2.2.12 M.2 SSD Applications

SSD with M.2 Key M interface NVMe (communication protocol is PCIe x4, the

interface is located on the back of the carrier board)

Set the M.2 Key M SSD as the file system disk

This solution is a third-party solution and its percentage stability is not

guaranteed. The NVMe SSD drive can be used as general storage space or as a file

system disk (rootfs and user area), i.e. the system boots up through EMMC (the DTB

and kernel Image files are still stored in EMMC) after booting the kernel, file system,

installed third-party tools, and user data The default storage is on the SSD.

Step 1: Prepare the SSD and format it to GPT format

(1) Prepare M.2 Key M SSD (2280 size specification)

(2) Open the Disks tool that comes with Ubuntu 18.04, find the SSD hard drive you installed, and first press "Ctrl+F" to quickly format it.

(3) Operation refer to the following diagram (follow the following way to carry out the relevant operations, to avoid causing errors that lead to the device can not enter

the desktop system)

a. Open the Disks tool at

b. Go to Disks, find the installed SSD, and then combine the keys "CTRL+F" to do a quick format of the drive, click Format

c. Continue clicking on Format

d. Enter the NX user password (case sensitive)

e. You can divide the size of the ratio yourself, the following figure is the default

maximum partition, click next

f. Give the partition a name, leave all other options as default and click create

g. The screen shown below appears, click on the triangle symbol to mount

h. The image below shows that the mount is successful

Step 2 : Convert system disk to EMMC built-in system

\$ git clone https://github.com/jetsonhacks/rootOnNVMe.git

Note: If git fails, you can go to the website and download the zip file and copy it to

the device to unzip it

\$ cd rootOnNVMe

\$. /copy-rootfs-SSD.sh (this takes a little longer, please be patient and wait for the execution to

finish before executing the next step)

\$./setup-service.sh

\$ sudo reboot

Step 3: Inspection

Reboot the machine, open a terminal and type df -h to see if the hard disk

device /dev/nvme0n1p1 is mounted on the /root directory, if not, re-run

2.2.13 GMSL Camera Application

GMSL camera application interface is based on V4L2 (abbreviation of Video for Linux, a driver framework for Linux video capture related devices), which provides a set of unified interface specifications for drivers and applications to facilitate application development.

GMSL Physical Interface Features

(1) Support the signal transmission of up to 15 meters coaxial cable, which can be extended by using Moriyun repeater.

(2) support different serializer camera, support output resolution of 720p, 1080p, 4K,

8M and other resolutions	of the camera
--------------------------	---------------

Noun	Explanation	Remarks	
Self-triggered	The camera is not controlled by	This mode is generally supported by	
	the trigger signal, and the	cameras. As long as the external does not	
	camera outputs images after	give the trigger signal is working in this	
	powering up	mode.	
Synchronous	Refers to a camera controlled by	Camera firmware support is required.	
Trigger	a trigger signal that outputs an	Please check with the manufacturer for	

image and simultaneously	support when purchasing the camera.
shutters when triggered.	It also requires an external trigger signal.

GMSL camera driver installation and lighting

For a list of supported cameras and driver installation dots, please contact sales to obtain them.

SZ Sensing TECH.,LTD

8/F, Block B, Building 1, Wisdom Home, Baolong

Avenue, Baolong Street, Longgang District, Shenzhen

Tel/Phone. +86-755-28990915

Mail/Email: Sales@sensing-world.com